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Abstract: We investigate the thermodynamics of the RR charged two-dimensional type-

0A black hole background at finite temperature, and compare with known 0A matrix model

results. It has been claimed that there is a disagreement for the free energy between the

spacetime and the dual matrix model. Here we find that this discrepancy is sensitive to

how the cutoff is implemented on the spacetime side. In particular, the disagreement is

resolved once we put the cutoff at a fixed distance away from the horizon, as opposed to

a fixed position in space. Furthermore, the mass and the entropy of the black hole itself

add up to an analytic contribution to the free energy, which is precisely reproduced by the

0A matrix model. We also use results from the 0A matrix model to predict the next to

leading order contribution to the entropy of the black hole. Finally, we note that the black

hole is characterized by a Hagedorn growth in its density of states below the Hagedorn

temperature. This, together with other results, suggests there is a phase transition at this

temperature.
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1. Introduction and motivation

An important issue in the context of two-dimensional string theories is the question of

whether black holes exist in the theory or not. This is important to understand since

if they do, they would provide an exciting laboratory for many of the most challenging

questions faced in string theory today. For example, what are the microstates making the

black hole, how should we think about curvature singularities, and what is the framework

for dealing with strongly time-dependent backgrounds such as the interior of the black

hole? What makes the 2d type 0 string theories particularly interesting in this regard, is

the fact that they have a nonperturbative reformulation in terms of the so called ĉ = 1

matrix models [1, 2].

In the case of the 0A string it has been known for some time that the low energy effective

theory does indeed predict black hole solutions [3 – 6]. These are RR-charged Reissner-

Nordstrom like black holes, with a thermodynamics very much like the higher dimensional

analogues. Indeed, even the Bekenstein-Hawking entropy-area relation is obeyed by these

2d black holes [6, 7]. Various aspects of these solutions have been studied [8 – 12].

In the early c = 1 literature the 0A matrix model, which at the time was known as the

deformed matrix model [13], was conjectured to describe an eternal black hole [13, 14]. It

is thus very suggestive that the low energy effective theory predicts a charged black hole,

with an extremal ground state which indeed should be eternal. A natural thing to do then,

as a preliminary check that the matrix model really describes a charged black hole, is to

reproduce the black hole thermodynamics directly in the matrix model.
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Attempts in this direction have been made. There has been some success, in particular

the ground state energy of the entire black hole spacetime is exactly reproduced by the

matrix model [6, 7]. However, at nonzero temperature it seems as if the correspondence

breaks down [5, 6].

The origin of the disagreement can be traced to the tree level term of the canonical

free energy. It turns out that in the matrix model, the free energy is independent of

temperature [15, 1, 16], while the spacetime analysis suggests it has an explicit temperature

dependence [5, 6]. As a result, the matrix model seems to predict a vanishing entropy at

tree level, in contradiction with the spacetime result which gives the black hole entropy at

the same level. The main purpose of this note is to investigate this discrepancy in more

detail.

One important observation is that the temperature dependence on the spacetime side

is sensitive to how the volume cutoff is implemented. The volume here is given in terms of

the Liouville direction. It is well known that the relation between the Liouville coordinate

and the eigenvalue coordinate of the matrix model is subtle, and so far not very well

understood. Therefore, one should be careful when expressing quantities on the spacetime

side in terms of the coordinates. In particular, in comparing with the matrix model, it is

not immediately clear what the most natural way of implementing the cutoff is. Indeed, on

the spacetime side one has a freedom of choosing coordinates, while the matrix model on

the other hand works in a prefered coordinate system. It is therefore clear that spacetime

quantities depending on the choise of coordinate system, can only successfully be matched

with matrix model quantities for one specific set of coordinates only.

We will find that in the coordinate system where it is most natural to put the cutoff at

a fixed distance away from the horizon, regardless of temperature, the free energy becomes

temperature independent. The resulting free energy coincides with the corresponding one

on the matrix model side. What is particularly interesting is that, as is clear from the

spacetime analysis, the constant free energy is consistent with a non-vanishing entropy.

As a further motivation for these considerations, let us focus for a moment on the free

energy at nonzero temperature for the black hole alone. As we will see, the total mass of

the spacetime is given by two distinct terms; the energy due to the electrostatic potential

as well as the mass of the actual black hole. So, let us express the canonical free energy of

the black hole only, i.e.1

FBH = MBH − TSBH . (1.1)

The black hole, at charge q and temperature T , has an entropy given by [5 – 7]2

SBH =
q2

8

(

1 − 2πT

k

)−1

, k =

√

2

α′
, (1.2)

and a mass [7]

MBH =
k

2π

q2

8

(

1 − 2πT

k

)−1

. (1.3)

1We emphasize that this is not the total free energy, which on the spacetime side we denote by Ftot,

where Ftot = FBH + Fel.stat..
2We will state our conventions and derive the thermodynamic quantities in the upcoming section.
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Note that the black hole mass is proportional to the entropy, with the proportionality

constant given by the limiting, or Hagedorn, temperature Th = k/2π. This means that the

low temperature phase is characterized by a stringy density of states.

We are now ready to write down the free energy for this black hole

FBH = MBH − TSBH =
k

2π

q2

8

(

1 − 2πT

k

)−1

− T
q2

8

(

1 − 2πT

k

)−1

= (Th − T )
q2

8

(

1 − T

Th

)−1

= Th
q2

8
, (1.4)

where again Th = k/2π. Now we see that the mass and the entropy of the black hole

conspire to make the resulting free energy temperature independent. Clearly, if the 0A

matrix model calculates a temperature independent free energy, it is too soon to conclude

that the entropy must vanish. Indeed, the above implies that one should expect to get a

temperature independent term like (1.4). Interestingly, the term (1.4) is precisely one of

the terms the matrix model calculates at tree level. The entire tree level term reads [6]3

FMM = Th
q2

8

[

1 − ln

(

q2k2

2ε2
c

)]

, (1.5)

where εc is an energy cutoff. Usually the first of the two terms in eq. (1.5) is not included

explicitly as it is regarded as an uninteresting analytic term in q. But according to what

we have just seen, this term is precisely the one which accounts for the black hole. We will

see many indications that the black hole hides in the analytic sector of the theory.

The second term in eq. (1.5) is clearly also temperature independent. As mentioned,

it has been claimed that this is in contradiction with the spacetime result [5, 6], which

seem to have a temperature dependence there. A purpose of this note is to remedy this

discrepancy, and find that the spacetime and matrix model results match perfectly also at

finite temperature.

We will only be concerned with the thermodynamics in this paper, and aspects related

to it. When we refer to the 0A matrix model we always refer to the singlet sector of the

model. Other approaches to find a matrix model black hole in the singlet sector include

attempts to create a black hole directly in the matrix model by high energy scattering.

This has been done both in the 0B model [17, 18], and in the nonextremal limit of the 0A

model [19]. Also the symmetries of the (bosonic) theory have been carefully explored in

this context [20].

This paper is organized as follows. We begin in section 2 by describing the black

hole geometry and the corresponding thermodynamics. It is found that the temperature

dependence for the free energy is sensitive to how the cutoff is implemented. With a cutoff

at a fixed distance away from the horizon, rather than a fixed position in space, the free

energy becomes independent of temperature. The coordinate system where this is most

naturally realized seem to exhibit some interesting universal features, which are briefly

3The calculation in [6] was done at zero temperature, but, as is well known, the tree level term is

unaffected by finite temperature.
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mentioned. We then turn to the matrix model in section 3, and look at the free energy

there. The two constant terms in the spacetime analysis, corresponding to the black hole

and the electrostatic potential respectively, are precisely reproduced by the matrix model.

From the one-loop term of the matrix model free energy, we predict the next to leading

order contribution to the entropy of the black hole. In section (4) we discuss the possibility

of a possible phase transition at the Hagedorn temperature. We find three main pieces of

evidence for this: the low temperature Hagedorn relation between the mass and the entropy

of the black hole, a tachyonic mode appearing precisely at the Hagedorn temperature, and

finally a high temperature phase formally similar to the deconfined phase of large N gauge

theories. We conclude in section 5.

2. The black hole geometry and its thermodynamics

2.1 The black hole solution

We begin this section by briefly reviewing known results. This will also serve to set the

conventions we will use.

The low energy effective 0A theory we consider here has one RR flux turned on, and

is defined by the following action [3]

S = −
∫

d2x
√−g

[

e−2Φ

(

R + 4(∇Φ)2 +
8

α′

)

− q2

4πα′

]

, (2.1)

where Φ is the dilaton field. Furthermore, the tachyon condensate 〈T (φ)〉 = µe−φ has been

set to zero. That is, we work in a theory where µ = 0. At µ = 0 it is possible to turn on

the second flux q̃. As shown in [16] this requires adding qq̃ strings to the spacetime. It was

shown there that the result of this in the matrix model, was that the physics in this case

only depends on the single parameter q̂ = q + q̃ [16]. Thus, if we want to generalize our

analysis to this case it seems like all we need to do is to dress our q with a hat. This seems

to explain the ambiguity of factors of 2 in comparing results with the matrix model [4 –

7]. That is, one can include only one or include both fluxes, the two choices are both

compatible with the matrix model.

The equations of motion following from this action are

Rµν +
q2

8πα′
e2Φgµν + 2∇µ∇νΦ = 0, (2.2)

R +
8

α′
+ 4∇2Φ − 4(∇Φ)2 = 0. (2.3)

Denoting the space-time coordinates by (t, φ), one finds the following solution [3 – 7]

ds2 = −l(φ)dt2 +
1

l(φ)
dφ2 (2.4)

Φ = −
√

2

α′
φ = −kφ, (2.5)

where

l(φ) = 1 − 1

2k
e−2kφ

(

2ke2kφH +
q2k2

8π
(φ − φH)

)

, (2.6)
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where we have been using k =
√

2
α′ . For a given charge q, the horizon radius has a minimum

φext at extremality. This happens when the two horizons coincide, or, equivalently, when

l(φ)
∣

∣

∣

φext

= l′(φ)
∣

∣

∣

φ=φext

= 0. (2.7)

This gives

φext =
1

2k
ln

(

q2

32π

)

. (2.8)

We thus see that for a large value of the flux q, the string coupling at the horizon is small

gs|φ=φext
= eΦ

∣

∣

φ=φext
= e−kφext =

√
32π

q
. (2.9)

Furthermore at finite temperature we have φH > φext, i.e. weaker coupling, so we do not

need to worry about quantum corrections to our solution.

We find the temperature of the black hole in the usual way

1

β
= T =

l′(φ)

4π

∣

∣

∣

∣

φH

=
k

2π

(

1 − q2

32π
e−2kφH

)

, (2.10)

where β denotes the period of euclidean time. Note that the temperature lies in the range

0 ≤ T ≤ k/2π. In particular, we can study the black hole at low temperature. This is

unlike the bosonic or uncharged black hole, where the temperature is constant and of order

one in string units. This is an important point since non-singlet states of the dual matrix

model are expected to be relevant only at high enough temperatures [21] (if at all [19]).

Therefore, only the singlet sector can be the relevant sector for describing this black hole.

It will become useful later to express the horizon radius in terms of the temperature.

Inverting (2.10) gives

φH =
1

2k
ln

(

q2

32π

)

− 1

2k
ln

(

1 − 2πT

k

)

. (2.11)

Note that the horizon radius diverges in the limit T → k/2π.

2.2 The thermodynamics of the black hole

The ADM mass of this spacetime is given by [6]

Mtot =
q2k2

8π
(φc − φH) + 2ke2kφH , (2.12)

where φc is a volume cutoff. Note that this is precisely the coefficient of e−2kφ in the

metric component (2.6), as it should since it is this term which gives the correction to the

asymptotic vacuum. Here we see the first indication that analytic as well as non-analytic
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terms are playing an important role.4 The non-analytic dependence on q is implicit in

the term linear in φH , as can be seen from (2.8) and (2.10). Accordingly, the analytic

dependence comes from the term exponential in φH .

The cutoff φc in (2.12) has a clear physical interpretation, and it is important to keep

it explicit [6, 7]. Indeed, since our black hole is charged, there is an electrostatic potential

and corresponding energy density associated with it. In two spacetime dimensions, the

potential is linear in the spatial coordinate so the corresponding energy density must be

constant. Thus, the energy becomes proportional to volume. We therefore see that the

first of the two terms in (2.12) is nothing but the electrostatic energy between the volume

cutoff and the black hole horizon [7]. The second term must therefore be the mass of the

black hole. Again, note that, after using (2.10), this term is analytic in q. We make this

explicit by writing

Mel.stat. =
q2k2

8π
(φc − φH) =

q2k2

8π

(

φc −
1

2k
ln

[

q2

32π

(

1 − 2πT

k

)−1
])

(2.13)

MBH = 2ke2kφH =
q2k

16π

(

1 − 2πT

k

)−1

. (2.14)

Note that the specific heat is positive below the Hagedorn temperature both for the entire

spacetime and for the black hole itself.

In deriving the full thermodynamics for this black hole solution we also need the free

energy, F , of the system. In the classical limit, the free energy is given by

F = −T ln Z = −T ln e−I = TI, (2.15)

where I is the euclidean action. Since we are going to compare our results with the 0A

matrix model, where q is treated as a fixed background parameter [1], it is natural to work

in the canonical ensemble for the charge q. In [6] this was done in detail, with the result

Ftot =
q2k2

8π
(φc − φH) +

q2k

16π
. (2.16)

The entropy is now given by

SBH =
1

T
(Mtot − Ftot) =

q2

8

(

1 − 2πT

k

)−1

. (2.17)

We can now see that the entropy is proportional to the mass of the black hole, with

proportionality constant given by the inverse Hagedorn temperature

SBH = βhMBH . (2.18)

It therefore appears as if the low temperature phase is characterized by a stringy density

of states. We will explore this further in section 4. Naively, (2.18) would suggest that the

system is at temperature Th. But since the total mass is Mtot = MBH + Mel.stat, one can

4I would like to thank Ulf Danielsson for pointing this out to me.
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verify that
∂SBH

∂Mtot

∣

∣

∣

∣

V

=
1

T
, (2.19)

where we take the total volume to be V = φc. We will verify that this is the correct

thermodynamic volume later.

In these coordinates it is natural to fix the cutoff at a fixed position in space. From a

physical point of view, however, this would mean that the contribution to the energy from

the electrostatic potential, decreases as the horizon radius grows larger. Furthermore, as

can been seen from eq. (2.11), the horizon radius goes to infinity in these coordinates as

the temperature reaches the Hagedorn temperature Th = k/2π. At this point, a fixed wall

in the φ−coordinate lacks a physical interpretation.

For these reasons, we will try a physically more sound way of implementing the cutoff.

Namely, instead of putting it at a fixed position in space, we will put the cutoff at a fixed

position away from the horizon, that is we keep φc − φH constant. A coordinate system in

which this is most naturally done is where the horizon is fixed at the origin. Some features

of this coordinate system will be explored in section (2.3).

One immediate consequense of this choice of cutoff is that the free energy (2.16) be-

comes independent of temperature. It is important to note that this is perfectly consistent

with a nonvanishing entropy. To make sure this choice is reasonable from a thermodynamic

point of view, we will show that it is consistent with the first law of thermodynamics. Note

that the charge enters the action (2.1) very much like a cosmological constant. This fixed

charge ensemble must therefore have a pressure associated with it. Indeed, by standard

methods we find

p = − ∂Ftot

∂V

∣

∣

∣

∣

T

= −q2k2

8π
. (2.20)

We are now ready to verify the first law

dF = −SdT − pdV. (2.21)

Since the free energy is constant, we have dF = 0. If we now identify the total volume

with the cutoff, i.e. V ≡ φc, we find that the total volume grows with temperature at the

same rate as the horizon does (2.11). At zero temperature, let φc(T = 0) = lc, then

φc = lc −
1

2k
ln

(

1 − 2πT

k

)

, (2.22)

so that

dV ≡ dφc =
∂φc

∂T
dT =

π

k2

(

1 − 2πT

k

)−1

dT. (2.23)

Given the expressions for the entropy and the pressure, we can now evaluate the right hand

side of eq. (2.21)

−SdT − pdV = −q2

8

(

1 − 2πT

k

)−1

dT −
(

−q2k2

8π

)

π

k2

(

1 − 2πT

k

)−1

dT = 0, (2.24)
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and so the first law is verified. It was important here to identify φc as being the correct

volume. Another choice might have been φc−φH . However, we only get the correct entropy

in the former case, since
∂Ftot

∂T

∣

∣

∣

∣

V

= −SBH , (2.25)

only for V = φc. The first law could also have been verified with a constant, temperature

independent, volume. In that case we would have dV = 0, but then dF 6= 0 since there is

an explicit temperature dependence through φH (2.16, 2.11).5

Finally let us comment on the free energy we have (2.16). We found that we can make

it constant by putting the cutoff at a fixed distance away from the horizon. However, the

first of the two terms in (2.16) explicitly depends on the cutoff, i.e. the spatial coordinate

we choose to use. We know this term is also constant on the matrix model side, and cutoff

dependent. The question now is how the cutoffs are related.

It is natural to suspect that the energy cutoff on the matrix model side is related to

the total volume on the spacetime side. We know the volume is given by φc, and that it

grows with temperature at the same rate as the horizon radius φH . From (2.11) and (2.22)

we find

φc − φH = − 1

2k
ln

(

q2

32π
e−2klc

)

. (2.26)

We can now replace φc − φH in (2.16) and find

Ftot = − q2k

16π
ln

(

q2

32π
e−2klc

)

+
q2k

16π
, (2.27)

which coincides with the expression for the free energy at zero temperature derived in [6].

Now we see that it is also the correct expression at finite temperature, given our imple-

mentation of the cutoff.

As already mentioned, the second term in (2.27), i.e. the one corresponding to the

black hole, is analytic in q. This is important to keep in mind when we go to the matrix

model, where usually only non-analytic terms are considered.

2.3 The black hole metric in a universal form

As mentioned above, a coordinate system in which it is natural to put the cutoff at a fixed

position away from the horizon is where the horizon is fixed at the origin. It turns out that

the black hole metric in these coordinates simplifies and that some specific features of the

system becomes more transparent. So, let us use (t, r), where r is defined through

φ = φH + r. (2.28)

The metric component l(r) becomes

l(r) = 1 − 1

2k
e−2k(φH+r)

(

2ke2kφH +
q2k2

8π
r

)

. (2.29)

5I would like to thank Troels Harmark for discussions on these issues.
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Simplifying and using eq. (2.10) we can now replace φH in eq. (2.29) and find

l(r) = 1 − e−2kr

[

1 + 2k

(

1 − 2πT

k

)

r

]

, (2.30)

where in particular one should note that the dependence on the charge q drops out. This

has been noticed both for the near horizon AdS2 region of the extremal black hole [8 – 10],

as well as for the entire extremal black hole itself [4]. Here we see that we can express the

geometry of the nonextremal black hole in terms of temperature alone, with no reference

to the charge. This is surprising since, quite generically, charged black holes are labeled by

two parameters; the charge and the deviation away from extremality. In this case, for some

reason, we can replace these two parameters by the single parameter T . Furthermore, we

still have a well defined geometry in the limit where T → k/2π. Indeed, in the strict limit

we recognize this geometry as Witten’s black hole [22]. We can put it in a more familiar

form by changing coordinates according to

r =
1

k
ln [cosh(kr̃)] . (2.31)

In the coordinates (t, r̃) the metric becomes

ds2 = − tanh2(kr̃)dt2 + dr̃2, (2.32)

which is precisely the familiar cigar geometry.6 It is known that the geometry (2.32) admits

an exact worldsheet CFT description. Since this geometry appears here as a limit of a more

general geometry, one is tempted to speculate that also (2.30) admits such a description.

Let us go back to the coordinates (t, r). We have seen that the metric in these coor-

dinates does not depend on the value of the charge q (as long as q is nonzero). However,

the physics still depends on it. Indeed, the charge now sits in the string coupling

g2
s = e2Φ = e−2kφ = e−2k(φH+r) =

32π

q2

(

1 − 2πT

k

)

e−2kr. (2.33)

Interestingly, the charge enters as a factor.7 This means that we can rescale the string

coupling by q and get a theory which is independent of any parameters, and which in this

sense is completely universal. In fact, this may have been anticipated for the following

reason. As our starting point we had the action (2.1). We can rescale this action according

to

S̃ =
1

q2
S, (2.34)

where then

S̃ = −
∫

d2x
√−g

[

e−2Φ̃

(

R + 4(∇Φ)2 +
8

α′

)

− 1

4πα′

]

. (2.35)

6Note that this black hole appears here in the limit where the string coupling goes to zero, i.e. Newtons

constant is zero [6, 7] and the entropy diverges. Infinite energy is thus required in order to create this black

hole.
7Note that for this reason, curiously, the analogue of the ’t Hooft coupling in higher dimensions λ̂ ∼ gsq

is in fact also independent of q [8].
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The solution to the resulting equations of motion is the metric (2.30) as before but now

with a coupling

g2
s = e2Φ̃ = 32π

(

1 − 2πT

k

)

e−2kr. (2.36)

This way of rescaling the action, and get a completely universal solution, is in fact very

similar to what was done in [23]. There, the purpose of the rescaling was to find a generic

prediction for how the entropy scales with charge, once higher order α′ corrections were

included.

This is an important question here as well. As already mentioned, the string coupling

can be made arbitrarily small by tuning up q, but as can be seen from the metric compo-

nent (2.30), there is no parameter to tune the curvature with. So, quite generically, the

curvature close to the horizon will always be of order one.8 Higher order α′-corrections

might therefore become important. We can therefore follow the argument in [23] in order

to obtain a generic prediction for the scaling of the entropy once higher order α′-corrections

are included. Higher curvature corrections to the metric (2.30) must be parameter inde-

pendent and can at most depend on the temperature. In case it still describes a black hole,

the entropy at zero temperature can thus only be a numerical constant. Call it n. Now,

since

TI = F = M − TSBH (2.37)

I = q2Ĩ ,

we find that in the original theory the entropy must be

SBH = q2S̃BH = nq2. (2.38)

This scaling agrees with the prediction of the leading order theory [5 – 7], which furthermore

predicts n = 1/8. Of course, it could be that there is no entropy at tree level in the rescaled

theory, once α′-corrections are included. Then clearly the entropy in the original theory

also vanishes. It is nevertheless encouraging to see that the dependence on the charge

predicted by the leading order theory agrees with this more general argument.

3. A matrix model black hole?

Let us now turn to the 0A matrix model. In the double scaling limit the theory is reduced

to a system of free fermions living in the potential [1, 16]

V (x) = − x2

4α′
+

q2 − 1
4

2x2
. (3.1)

We are interested in calculating the tree level term of the canonical free energy at finite

temperature. This has been done many times before, and, as is well known, the leading

8In this regard, it is interesting to note that, as can easily be verified, the near horizon region of the

black hole (2.30) interpolates between curvature R = −4k2 at zero temperature, to curvature R = 4k2

at the Hagedorn temperature. In the intermediate regime where the curvature is small at the horizon, it

becomes large at a distance of order one string length away from the horizon.
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term is independent of temperature and therefore coincides with the expression for the

ground state energy of the system9 (as is the case for the leading order term in spacetime

as well (2.27)). Thus, for the purpose of finding the leading order term, we only need to

calculate the ground state energy, which is given by

E =

∫ −ε

−εc

ερ(ε)dε, (3.2)

in which we introduced an energy cutoff εc. The density of states ρ(ε) is given by

ρ(ε) = − 1

π
Im

∞
∑

n=0

1

En + ε
, (3.3)

where En correspond to single particle energy levels. Since we are mainly interested in the

leading order term we can follow [6], and find

ρ(ε) = − 1

2πk
ln

(

q2

4
+

ε2

k2

)

+ · · · , (3.4)

which, when plugged into (3.2), gives

FMM =
q2k

16π

[

1 − ln

(

q2k2

4ε2
c

)]

+ · · · , (3.5)

at µ = 0. In the last step special care was taken to include analytic terms [6]. In particu-

lar (3.2) calculates a term

4ε2
c

k2
ln

(

q2 +
4ε2

c

k2

)

, (3.6)

which for large εc results precisely in the analytic term in (3.5) together with terms inde-

pendent of q and higher order in 1/εc.

We now see that the analytic term found in the matrix model (3.5) coincides precisely

with the analytic term on the spacetime side, being due to the black hole itself. The

non-analytic term, furthermore, is the same as the one corresponding to the electrostatic

energy. On the spacetime side we needed the ADM mass of the spacetime in order to derive

the entropy (2.17). Alternatively, we could find the entropy directly from the constant

free energy after identifying the correct thermodynamic volume (2.25). Either of these

approaches should be possible also on the matrix model side. As for the ADM mass, just

as for the free energy, we have seen that it is essential to keep track of the analytic terms

in q (2.12).

While it remains a challenge to find the entropy directly in the matrix model, we can

actually use the model to predict the first entropy correction of the spacetime system. For

this purpose, we write down the non-analytic part of the one-loop term for the free energy

9Note that this is not the case in the 0B theory [16] when q 6= 0.
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(again keeping the cutoff explicit)

F 1−loop
MM =

k

48π

[

1 +

(

2πT

k

)2
]

ln

(

q2k2

4ε2
c

)

. (3.7)

This term, just like the tree level term, is well known to have a volume dependence (see

for example [25]), explaining the presence of the cutoff. In matching the tree level terms

corresponding to the electrostatic energy, we can relate the volume cutoffs via the relation

φc − φH = − 1

2k
ln

(

q2

32π
e−2klc

)

= − 1

2k
ln

(

q2k2

4ε2
c

)

. (3.8)

Comparing this with (3.7) immediately suggests that the spacetime one-loop term should

read

F 1−loop = − k2

24π

[

1 +

(

2πT

k

)2
]

(φc − φH), (3.9)

from which the quantum corrected entropy can be evaluated according to

S1−loop = −
(

∂F 1−loop

∂T

)

φc

=
πT

3
(φc − φH) (3.10)

− 1

24

[

1 +

(

2πT

k

)2
]

(

1 − 2πT

k

)−1

, (3.11)

where we used the relation (2.22). The term (3.10) has a clear physical interpretation, it

is the entropy of a single quantum field (the tachyon) living in the spatial volume φc −
φH . More interesting is the second term (3.11). We interpret it as a quantum corrected

contribution to the black hole entropy. It has a temperature dependence very similar to

the leading order term (2.17), but is parametrically smaller by a factor ∼ −q2. At zero

temperature it is merely a numerical constant −1/24.

In relating the cutoffs (3.8), we have on the spacetime side two temperature dependent

terms canceling (2.26), i.e. φc − φH . But since we are instructed to keep φc fixed when

deriving the entropy, we effectively have a temperature dependence in the free energy

(through φH), and so we get a nonzero entropy as a result. The relation between the

cutoffs might provide a hint to how a similar thing could be done directly in the matrix

model. In principle, there should be two canceling terms in the matrix model as well, but

since in this case we do not have a clear notion of a horizon radius, it is not clear how to

rewrite the expression as we do in the spacetime picture.

Even without a direct matrix model calculation, however, we were able to make a

nontrivial prediction for the quantum corrected free energy (3.9), using the matrix model.

This term is of an extremely natural form given the expression for the leading order term.

It would of course be very interesting to, as a check, calculate the one-loop term directly

on the spacetime side.
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4. Speculations on Hagedorn thermodynamics and phase transitions

4.1 A phase transition?

We have seen how the density of states of the black hole grows exponentially with the mass

of the black hole. Furthermore, the proportionality constant between the mass and the

entropy of the black hole is given by the limiting temperature of the black hole Th = k/2π.

A natural question at this point is what characterizes the physics close to this temperature.

In higher dimensions, with a low temperature density of states like what we found

here, typically one expects a phase transition to take place, see for example [26, 27]. It has

been pointed out many times in the literature that in the 2d type 0 theories, this does not

happen. The reason is that the theory does not have enough states. Indeed, on the 0A

side, the only propagating degree of freedom is the tachyon, while on the 0B side there is

only in addition the RR scalar. Being aware of this we will still in this section try to find

further support for the idea that there is a phase transition connecting the type 0A and

0B theories. Indeed, the mere existence of a black hole suggests that there is more to the

theory than what naively might be expected. For example, the spectrum also contains an

infinite number of higher level discrete states. Perhaps, just like in critical string theory,

these states are responsible for the Hagedorn relation between the mass and the entropy

of the black hole.

What in higher dimensions signals the onset of a phase transition is the development

of singularities in thermodynamic quantities, as the temperature reaches a critical value.

This is precisely what we find here both for the mass (2.14) and the entropy (2.17) of the

black hole. Even though we have a constant free energy (2.16), since we keep φc − φH

fixed, it has an effective logarithmic divergence in operations where the volume φc is kept

fixed (2.25).

In systems where phase transitions happen, these types of singularities can be under-

stood in essentially two ways. One is by the exponential mass dependence for the density of

states ρ(M) ∼ eβhM . If we formally write the logarithm of the thermal partition function

as

ln(Z(T )) ∼
∫

dMρ(M) e−βM ∼
∫

dMeβhM−βM , (4.1)

we see that it diverges for temperatures larger than the Hagedorn temperature Th. Since

we found here that the density of states grows exponentially with the mass of the black

hole, we can explain the divergences we have found precisely in this way. Note however that

the degeneracy does not grow with the total ADM mass of the spacetime, but only with

the mass of the black hole. In practice what one does is to first integrate out the vacuum

part, which in this case corresponds to the electrostatic energy, and then separately take

care of the thermal part, here the black hole.

As mentioned, the divergence can also be explained from an alternative point of view.

Namely, if in the spectrum a mode becomes tachyonic at some critical temperature, the

partition function will diverge there due to the appearance of the negative mass squared

term. This tachyonic mode can also be considered as the dynamical mechanism that takes

the system from one phase to another.
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As is well known (see for example [26]), this happens in critical string theory for strings

winding the thermal circle, when the circle is small enough. In our case, however, the lowest

lying state, the so called tachyon, is not tachyonic. And winding the thermal circle will

only make it heavier. However, it has been shown that the mass of the originally massless

tachyon depends in a nontrivial way on the black hole background. In case of the extremal

black hole, the mass is lifted to positive mass [9, 10]. But let us repeat the analysis of [9, 10]

in case of the nonextremal black hole. Quite remarkably, we will find that precisely at the

Hagedorn temperature, the tachyon becomes truly tachyonic.

In order to obtain the linearized equation of motion for the tachyon T , we need to

generalize the action (2.1) to leading order in T . With only one one RR flux turned on, it

is given by [1]

S = −
∫

d2x
√−g

[

e−2Φ

(

8

α′
+ R + 4(∇Φ)2 − 1

2
(∇T )2 +

1

α′
T 2

)

(4.2)

−(1 + 2T + 2T 2 + · · · ) q2

4πα′

]

. (4.3)

The equation of motion for the rescaled tachyon e−ΦT becomes

[

∇2 + ∇2Φ − (∇Φ)2 +
2

α′
− q2

πα′
e2Φ

]

(e−ΦT ) =
q2

2πα′
eΦ, (4.4)

which has the form of a sourced10 Klein-Gordon equation with a mass-term

m2
T = ∇2Φ − (∇Φ)2 +

2

α′
− q2

πα′
e2Φ. (4.5)

Using (2.3) the mass term can be written as

m2
T =

R
4

+
q2

πα′
e2Φ. (4.6)

In the coordinate system (r, t) e2Φ is given by (2.33) and the Ricci scalar is

R =
8

α′
e−2kr

[

2kr − 2r

R
+

2

kR
− 1

]

, (4.7)

where R is the radius of the thermal circle, i.e. β = 2πR. We can now express the mass

squared of the tachyon in terms of position r and the radius of the thermal circle according

to

m2
T =

2

α′
e−2kr

[

2kr − 2r

R
− 14

kR
+ 15

]

. (4.8)

This is a generalization of the mass formula for the tachyon found in [9], which considered

the near horizon region at zero temperature. As a check, it is easy to verify that (4.8)

reduces to the result in [9] in the limit r → 0 and R → ∞.

10The source can be made to go away by including the second flux q̃ with equal size as q [9, 10], i.e. q̃ = q.

But then one must also worry about the additional qq̃ strings which should be added to the spacetime [16].
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Now, note that (4.8) is always positive outside the horizon (i.e. when r > 0) as long as

the temperature is below the Hagedorn temperature, corresponding to R > 1/k. However,

as soon as R < 1/k there is always a point outside the horizon beyond which the tachyon

becomes truly tachyonic all the way out to infinity. As promised, we have found a tachyonic

mode which appears precisely at the Hagedorn temperature, thus further supporting the

idea that the system goes through a phase transition at that point. We find this result

quite suggestive.11

4.2 The high temperature phase

We continue here by making a preliminary investigation of the physics above the Hagedorn

temperature. Since this temperature corresponds to the self-dual radius of the T-dual 0A

and 0B theories [29, 16, 30], the physics above the Hagedorn temperature in 0A, is thus

more properly described at temperatures below the Hagedorn temperature in 0B. In this

sense the 0A theory is the low temperature phase, while the high temperature phase is 0B.

We perform this analysis on the matrix model side. We will be brief here and refer to [16]

for further details.

In the 0B theory the potential is given by

V (x) = − x2

4α′
, (4.9)

and is filled by fermions on both sides. Filling the two sides to different levels is related

to the instanton charge of the theory [1]. In the Euclidean formulation the difference in

levels become imaginary shifts of the Fermi surface [16]. This means that in the grand

canonical ensemble the theory has two Fermi levels given by µB + iq/RB and µB − iq/RB

respectively. Let us compare the tree level and one-loop expressions of the free energies in

this ensemble for the type 0A and 0B theories at µA = µB = 0. We will ignore the analytic

terms here and only focus on the ground state energy and the degrees of freedom in the

gas at temperature T = 1/(2πR).

In general in 2d, one has

ln Z

V
= a

R

α′
+

b

R
, (4.10)

where the dimensionless constant a is a measure of the ground state energy, and b is a

measure of the degrees of freedom of the system. Usually both these terms come from

one-loop calculations. But as we have seen, the ground state of the 0A theory receives

contributions already at tree level. From the results of section (3) we can write the (grand)

11We should point out that the tachyon considered here is of a rather different nature than the more

familiar winding tachyons. This tachyon more resembles spacetime dependent “quasilocalized” tachyons

considered in for example [28]. In this regard, note that inside the horizon (r < 0), below the Hagedorn

temperature, beyond a certain point the mass squared (4.8) becomes negative with an exponentially growing

value.
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canonical free energy at µA = 0 as12

−2πRAF̃A

V
=

ln(ZA)

V
= −1

2

(

q2 − 1

3

)

RA

α′
+

1

12RA
. (4.11)

From this we can immediately find the corresponding 0B expression by using the T-dual

operation at µ = 0 [16]

RARB = α′. (4.12)

Alternatively, we can read it off directly from [16]. The result is the same

−2πRBF̃B

V
=

ln(ZB)

V
=

RB

12α′
− 1

2

(

q2 − 1

3

)

1

RB
. (4.13)

Before interpreting this result we must Legendre transform the expression for the grand

canonical free energy to the canonical free energy. Essentially, we have two sides with Fermi

levels iq/RB and −iq/RB respectively. Legendre transforming these two sides results in a

sign flip of the q2-term.

The main point now is the following: After transforming to the canonical ensemble,

the term measuring the number of degrees of freedom (the constant b in (4.10)) makes a

sudden jump as one goes from 0A to 0B

b :
1

12
→ 1

2

(

q2 +
1

3

)

. (4.14)

We know that in 0A the 1/12 corresponds to a single scalar degree of freedom, i.e. the

tachyon. We therefore see that the precise number of real scalar degrees of freedom ndof ≡
12b makes the following jump at the Hagedorn temperature

ndof : 1 → 6q2 + 2. (4.15)

The 2 is easy to understand; it accounts for the tachyon and the RR scalar [1, 2]. But now

we find in addition a tree level contribution 6q2. In 0A it was the ground state energy which

received a tree level contribution, in 0B it is instead the number of degrees of freedom. Even

though, by T-duality, this should be the case, it is quite mysterious and we do not have a

clear understanding of this result. Should one interpret the 6q2 as true physical real scalar

degrees of freedom of the system, and if so, what are they?13

Surprising as it may be, this is strikingly similar to the deconfined phase of large N

gauge theories. Typically, in confining U(N) gauge theories the low temperature phase is

characterized by a Hagedorn density of states [27] and a gas of O(1) degrees of freedom,

corresponding to gauge singlets. The ground state energy is of order N2. In the high

temperature deconfined phase, the gas has of order N2 degrees of freedom, since now all

the individual gluons can contribute. This clearly resembles the jump we have seen in the

degrees of freedom as one enters the high temperature 0B phase.

12At µA = 0 the expressions for the canonical and grand canonical free energies are obviously the same.

This is not so in the 0B theory since at µB = 0 there are still the nonzero imaginary shifts in the Fermi

levels. We denote the grand canonical free energies by a tilde.
13We note that there are additional massless solitonic states in 0B [31], which do not exist in 0A.
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Another interesting analogue to confining theories is the linear Coulomb potential we

have in 0A. It looks very much like a flux tube. A defining property of confining theories

is that it takes infinite energy to add a single external quark to the theory. The reason

is that the flux tube (or “QCD-string”) goes from the quark all the way to infinity since

it has nowhere else to end. In 0A we see that it takes infinite energy to add a single D0

brane, since in this case the electric potential grows linearly all the way to infinity. Perhaps

one can think of this “tube” as condensing at the Hagedorn temperature, and resulting in

what we found on the 0B side?14

Let us address one more point before concluding. In other examples of the gauge/gravi-

ty correspondence it is the high temperature deconfined phase which corresponds to the

black hole [32, 33]. Here we found the black hole in the low temperature 0A regime. There

is no contradiction here. In AdS, the specific heat for black holes is only positive for so

called large black holes [34]. These black holes can only exist in stable equilibrium with

the heat bath if the heat bath temperature is large enough. For the 0A black hole, on the

other hand, already the low temperature Hagedorn phase has a positive specific heat, thus

describing a stable black hole system below the Hagedorn temperature.

5. Concluding remarks

We have found that the free energy calculated on the matrix model side agrees with the

one calculated on the spacetime side, also at finite temperature. The analytic term corre-

sponding to the black hole itself as well as the term representing the electrostatic potential,

are both exactly reproduced by the matrix model.

Furthermore, using our prescription for how the volume outside the horizon is related to

matrix model expressions, we could use the one-loop term of the matrix model free energy to

predict the next to leading order expression for the entropy of the black hole spacetime. The

result revealed two distinct contributions. One due to a bosonic gas between the horizon

and the cutoff. The other due to the black hole itself with a temperature dependence

similar to the leading order term, but parametrically smaller by a factor −q2.

Our findings are clearly compatible with the existence of a matrix model black hole.

We have not, however, been able to derive the entropy directly in the matrix model. This

is still an important open problem. We have emphasized the importance of keeping track

of the analytic terms in the analysis. This is in general difficult when cutoff dependent and

non-analytic terms are present. For the free energy we could do this, and it should also be

possible in the calculation of the total mass at finite temperature. This is the analogue of

the ADM mass calculation on the spacetime side.

Results both from the spacetime analysis and the matrix model suggest that the 2d type

0 theory should be viewed as one theory with two phases, separated by a phase transition;

0A being the low temperature phase, and, by T-duality, 0B the high temperature phase.

The low temperature phase describes a black hole and is characterized at finite temperature

by a Hagedorn density of states and a gas with one single degree of freedom, i.e. the tachyon.

14The possibility of a phase transition in the type 0 theories, similar to that in large N gauge theories,

have also been suggested in [27].
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The fact that the black hole exists in the low temperature phase is simply a consequence

of the positive specific heat for the black hole in this regime. This is in contrast to for

example AdS black holes, which do not exist at low temperature.

The high temperature 0B phase more resembles a “deconfined” phase where now the

gas, apart from the tachyon and the RR scalar, apparently also consists of an additional

6q2 degrees of freedom. As explained in the main text, by T-duality this result should be

expected, given the 0A expression. On the other hand we only expect the mentioned two

degrees of freedom in the 0B theory. It would clearly be very interesting to interpret this

result on the spacetime side.

As further evidence for a phase transition at the Hagedorn temperature, we have

identified the tachyonic mode which appears at that point. The mass of the so called

tachyon in the 0A phase depends in a nontrivial way on the background, and we found

that it actually becomes tachyonic precisely at the Hagedorn temperature (4.8).

Clearly, it is too soon to draw any definite conclusions as there are many important

issues yet to be settled. Most pressing, perhaps, is the lack of a direct calculation of the

black hole entropy in the matrix model. But we have also found some new interesting

results. This makes us feel there is some exciting physics in these models, yet to be fully

appreciated.
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